Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-Mhigh melanoma cell populations
نویسندگان
چکیده
The activity of the M isoform of microphthalmia-associated transcription factor (MITF-M) has been attributed to regulation of differentiation, proliferation, survival and senescence of melanoma cells. MITF expression was shown to be antagonized by the activation of transcription factor NF-κB. Parthenolide, an inhibitor of NF-κB, has not been yet reported to affect MITF-M expression. Our results obtained in patient-derived melanoma cell populations indicate that parthenolide efficiently decreases the MITF-M level. This is neither dependent on p65/NF-κB signaling nor RAF/MEK/ERK pathway activity as inhibition of MEK by GSK1120212 (trametinib) and induction of ERK1/2 activity by parthenolide itself do not interfere with parthenolide-triggered depletion of MITF-M in both wild-type BRAF and BRAF(V600E) melanoma populations. Parthenolide activity is not prevented by inhibitors of caspases, proteasomal and lysosomal pathways. As parthenolide reduces MITF-M transcript level and HDAC1 protein level, parthenolide-activated depletion of MITF-M protein may be considered as a result of transcriptional regulation, however, the influence of parthenolide on other elements of a dynamic control over MITF-M cannot be ruled out. Parthenolide induces diverse effects in melanoma cells, from death to senescence. The mode of the response to parthenolide is bound to the molecular characteristics of melanoma cells, particularly to the basal MITF-M expression level but other cell-autonomous differences such as NF-κB activity and MCL-1 level might also contribute. Our data suggest that parthenolide can be developed as a drug used in combination therapy against melanoma when simultaneous inhibition of MITF-M, NF-κB and HDAC1 is needed.
منابع مشابه
FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells
Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma ce...
متن کاملMicrophthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas.
Apoptosis and senescence are cellular failsafe programs that counteract excessive mitogenic signaling observed in cancer cells. Melanoma is known for its notorious resistance to apoptotic processes; therefore, senescence, which remains poorly understood in melanomas, can be viewed as a therapeutic alternative. Microphthalmia-associated transcription factor (MITF), in which its M transcript is s...
متن کاملSIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells
SIRT1 operates as both a tumor suppressor and oncogenic factor depending on the cell context. Whether SIRT1 plays a role in melanoma biology remained poorly elucidated. Here, we demonstrate that SIRT1 is a critical regulator of melanoma cell proliferation. SIRT1 suppression by genetic or pharmacological approaches induces cell cycle arrest and a senescence-like phenotype. Gain and loss of funct...
متن کاملA genomic screen identifies TYRO3 as a MITF regulator in melanoma.
Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all deaths caused by skin cancers. Microphthalmia-associated transcription factor (MITF) is a master gene regulating melanocyte development and functions as a "lineage addiction" oncogene in malignant melanoma. We have identified the receptor protein tyrosine kinase TYRO3 as an upstream regulator of MIT...
متن کاملmicroRNA-155, Induced by Interleukin-1ß, Represses the Expression of Microphthalmia-Associated Transcription Factor (MITF-M) in Melanoma Cells
Loss of expression of surface antigens represents a significant problem for cancer immunotherapy. Microphthalmia-associated transcription factor (MITF-M) regulates melanocyte fate by driving expression of many differentiation genes, whose protein products can be recognized by cytolytic T lymphocytes. We previously reported that interleukin-1ß (IL-1ß) can downregulate MITF-M levels. Here we show...
متن کامل